Costs and Benefits of Alternative Fuels for an LR1 Product Tanker

Key results from a DNV GL and MAN Diesel & Turbo joint study
Contents

Background ... 5
Objective of the study ... 5
Operating pattern ... 5
Fuel variants ... 6
Machinery .. 7
Fuel price scenarios ... 8
Results ... 9
Sensitivity of fuel prices, LNG tank investment and bunkering choice 11
Conclusions ... 13
Costs and Benefits of Alternative Fuels for an LR1 Product Tanker

Key results from a DNV GL and MAN Diesel & Turbo joint study

Background

The sulphur emission control areas (SECAs) in place in North-America and Northern Europe, in combination with the upcoming global 0.5% limit on sulphur in 2020 (or 2025) and similar EU limits in 2020, call for alternative fuels as a means for compliance. Several alternative fuels are available and, at the same time, new fuel oil products with very low sulphur content have been introduced.

In June 2015, IMO’s Maritime Safety Committee (MSC) adopted the International Code of Safety for Ships using Gases or other low-flashpoint Fuels (IGF code). The IGF code aims to minimize the risk to the ship, its crew and the environment, taking into account the nature of the fuels involved, which can pose some safety risks if not properly managed. As such, the IGF code created long-expected predictability for planning gas-fuelled ships.

Objective of the study

The goal of this study was to analyse costs and benefits of various fuel options for a case with one particular ship and its operating pattern. The alternative fuels selected were LNG, LPG, methanol and a new ultra-low-sulphur fuel oil, a so-called hybrid fuel. Costs and benefits for a newbuild were determined by looking at its additional investment and operating costs compared to a standard fuel variant using HFO and MGO.

An LR1 product tanker on a fixed route was selected to perform a financial analysis. For the various fuels, the machinery setup was the same, except for the fuel system. Product tanker is a market segment where DNV-GL expects an annual growth to 2020 in tonnage demand of 3 to 3.5%. The general arrangement of the selected ship is shown in Fig. 1 and its main particulars are presented in Table 1.

Operating pattern

The ship is assumed to operate on a route between Northern America and Northern Europe: Houston-Rotterdam-Ventspils-Houston. From the total distance of about 11,700 nautical miles, approximately 37% is inside a SECA.

The typical speed for similar sized product tankers on similar trades was determined from AIS data to be about 12.5 knots, and this speed was then used as fixed transit speed of the ship. With 360 operating days a year this corresponds to about 8 roundtrips per year with 87% of the time spend in transit, 3% in ap-

Length, O.A.	225 m
Breadth, Mld.	32.26 m
Scantling draught	14.2 m
Design draught	12.2 m
Main Engine	1 x MAN B&W 6G60ME-C9.5
NCR (90% SMCR)	10 390 kW at 88.8 RPM
Design speed at NCR	15 knots, incl. 15% sea margin
PTO	Fixed ratio, 778 kW
GenSet	3 x MAN 7L23/30H at 944 kW

Table 1: Main particulars of the selected ship

Fig. 1: General arrangement of the selected 75 000 D.W.T. Panamax tanker. The tanks of LNG, LPG and Methanol are indicated together with a pump room used for the alternative fuel.
approach and 10% in port. The selected route is shown in Fig. 2. Typical cargoes from Europe could be light diesel and returning from North America heavier distillates, e.g. marine gas oil.

Fuel variants

The main idea of the study was to investigate different fuel options for the selected product tanker on the selected route. The reference fuel case consists of HFO outside of SECA and MGO inside. The reduction in global sulphur cap has in this study been assumed to be enforced from 2020, and hence LSFO with 0.5% S is the reference fuel outside of SECA from 2020.

Table 2 shows the fuel variants considered in this study. For the alternative fuels considered (LNG, LPG, and methanol), one variant includes use of the alternative fuel for the entire round trip (one-fuel variant, e.g. denoted “LNG”), while a second variant assumes use of the alternative fuel in the SECAs only and HFO/LSFO outside (mixed fuel variant, e.g. denoted “LNG/HFO”).

Renewable diesel (also called hydrogenated vegetable oil) was also considered in the beginning of the study. It is a high-quality biofuel produced from vegetable oil and animal fat, but the current price of about 1000 €/tonne renders it uncompetitive in this study.

![Fig. 2: Selected route between Northern America and Europe.](image)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Inside ECA</th>
<th>Outside ECA, 2018-2019</th>
<th>Outside ECA, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>MGO</td>
<td>HFO</td>
<td>LSFO 0.5%</td>
</tr>
<tr>
<td>LNG</td>
<td>LNG</td>
<td>LNG</td>
<td>LNG</td>
</tr>
<tr>
<td>LPG</td>
<td>LPG</td>
<td>LPG</td>
<td>LPG</td>
</tr>
<tr>
<td>Methanol</td>
<td>Methanol</td>
<td>Methanol</td>
<td>Methanol</td>
</tr>
<tr>
<td>LNG/HFO</td>
<td>LNG</td>
<td>HFO</td>
<td>LSFO 0.5%</td>
</tr>
<tr>
<td>LPG/HFO</td>
<td>LPG</td>
<td>HFO</td>
<td>LSFO 0.5%</td>
</tr>
<tr>
<td>Methanol/HFO</td>
<td>Methanol</td>
<td>HFO</td>
<td>LSFO 0.5%</td>
</tr>
<tr>
<td>ULSFO 0.1%</td>
<td>ULSFO 0.1%</td>
<td>ULSFO 0.1%</td>
<td>ULSFO 0.1%</td>
</tr>
</tbody>
</table>

Table 2: Fuel variants defined for this study
LNG and LPG can reduce the carbon footprint with up to about 20%, depending on how the fuel is produced. Methanol offers potential future reductions by production from renewable sources, possibly at a lower cost premium than LNG and LPG.

The additional investment costs relative to the reference scenario for tanks, piping and engine modification were considered in the financial analyses, cf. Fig. 3. Tanks were assumed to be placed on deck and not lead to reduced cargo capacity and, thus, reduced earning. Measures needed to reduce NO\textsubscript{x} emission to IMO Tier-III levels were for simplicity assumed to be at a similar overall cost for all the fuel variants and, hence, neglected from the study. The investment year was set to be 2017 with operations between 2018 and 2030.

Machinery

An MAN B&W 6G60ME-C9.5 was selected as the main engine, which can give the ship a design speed at 90% engine load of 15 knots, including a 15% sea margin. The calculated power for propulsion to reach 12.5 knots is 5.3 MW. Specific fuel oil consumptions for this engine for each fuel at various engine loads were used in the calculations and the efficiency is shown in Fig. 4. The 6G60ME-C9.5 engine is available as a standard oil-fuelled diesel engine, but also in dual fuel versions capable of burning LNG or methanol or LPG (the ME-GI and ME-LGI types, respectively).
The propulsion system is equipped with a fixed-ratio power take off (PTO). The capacity of the PTO is 778 kW offering a simple and cost-effective way to supply all the electric power from an alternative fuel when the ship is in transit. Apart from the reduced investment in equipping auxiliary engines for alternative fuel operation, the PTO also minimizes the maintenance cost on the gensets. In approach and port, auxiliary engines powered by MGO are used, as illustrated in Fig. 5. For more information about different PTO configurations, please refer to MAN paper on PTO.

The main engine is for the three alternative fuel options equipped with a second fuel system enabling the engine to work as a dual fuel engine. This engine configuration offers full fuel flexibility with same available power in both fuel oil and second fuel mode. Fuel oil mode (or MGO mode in SECAs) acts as fallback mode in case of unintended interruption of the second fuel mode. Also for this reason the original fuel oil tank capacity is kept unchanged in this study.

The tank size for the alternative fuels was selected to give the vessel half-round-trip endurance with a 20% margin. This limits the investment costs, but increases exposure to volatile fuel prices. For LPG and LNG the tanks are placed on deck and for methanol in the double bottom of the ship. In all cases the cargo capacity of the case ship is kept, and it has been assumed that there is no significant change in the draught of the vessel for any mass change of the ship related to use of the alternative fuels. 1

1 Shaft Generators for Low Speed Engines”, 2015

Fuel price scenarios

The fuel price scenario is important for the financial viability of the various fuel options. Historic fuel prices are shown in Fig. 6 for the last 5 years. Apart from the expected variations for each fuel type, the relative position of the fuel prices has changed over the period. MGO has become less expensive than methanol, and LNG has become as expensive as LPG. In addition, the price difference between HFO and LNG has decreased recently.

Two price scenarios were developed: A high price scenario based on the fuel prices in mid 2014, at a time when the Brent oil prices were 100-110 $/barrel, and a low price scenario based on fuel prices in mid 2015 when the Brent oil prices were about 50 $/barrel. For each scenario, an annual increase in fuel prices of 1% was assumed, due to

Fig. 5: Power generated and distributed between PTO, main engine and auxiliary engines for the selected trading pattern.

Fig. 6: Historic fuel prices on energy basis.
expected increase in oil and gas production costs.

Distribution costs for LNG were estimated, based on the costs of operating a LNG bunkering barge, to 100 $/t or about 2 $/mmbtu. This cost was assumed to stay constant over time. Similarly, the distribution costs of LPG were considered to be half the distribution cost of LNG, i.e. 50 $/t.

The two price scenarios are illustrated in Fig. 7 based on the historic prices shown in Fig. 6. For the purpose of the analysis we have differentiated between the prices in USA and Europe. For methanol and HFO, the prices are the same at the exchange rates. For LPG and LNG, the prices are cheaper in USA, whereas for MGO the prices have been considered lower in Europe. It should be noted that the price for the reference fuel outside SECAs is changing in 2020 from HFO to LSFO.

Results

For each fuel variant the investment cost difference and the annual cost differences have been determined, cf. Fig. 8. The diagrams show cost difference (either advantage or disadvantage) for the various fuels against the reference variant for both fuel price scenarios.

![Fig. 7: Fuel price scenarios: high price scenario (left) and low price scenario (right).](image)

![Fig. 8: Annual cost difference for the various fuel variants under the two price scenarios: high price scenario (left) and low price scenario (right).](image)
In the high-price scenario, LNG and LPG, both in the one-fuel variants and mixed fuel variants deliver a cost advantage during operation compared to the reference. There are however also substantial investments for these alternatives. A large part of this, in particular for LNG, is related to investments for the tanks.

For the one-fuel variants, the cost advantage improves significantly after the global 0.5% sulphur cap enters into force. However, for the mixed-fuel variant, where the alternative fuel is only used in the SECA, the annual cost difference does not change by the global sulphur cap since both the reference case and the project case change in the same way (from HFO to LSFO) outside SECA. However, since the fuel price is lower for LNG and LPG than for LSFO, the one-fuel variant becomes financially more attractive after the global sulphur cap.

In the low price scenarios, both LNG and LPG become less attractive. The cost difference for LPG stays positive for all operational years, whereas LNG is estimated to be negative prior to the global sulphur cap and positive afterwards.

Selecting methanol does not give a positive cost difference compared to the reference case for any of the price scenarios, and hence the investments needed for engine upgrade, gas supply system and tanks are not paid back. The methanol can be made financially attractive by reducing the methanol price, keeping the other fuel prices constant. For such a scenario, the methanol price needs to be reduced to 18-20% below the MGO price in the high price scenario to have a payback time similar to LNG and LPG. In the low price scenario, the methanol price needs to be reduced even more. Such lower prices for methanol are more likely to become a reality if a lower grade fuel methanol would be introduced to the fuel market.

Another option is to use ULSFO (hybrid fuel) for the entire round trip. The benefit of this is to avoid the compatibility issues related to fuel changes between hybrid fuel and HFO when entering/leaving SECAs. Nevertheless, even after the global sulphur cap the annual fuel costs for this scenario are at the same level and hence not better from a financial point of view than the reference option.

In the high price scenario, both LNG and LPG have payback periods in the 5-10 years range. As expected the payback time decreases at higher vessel speeds since the investment costs are the same and the cost difference for each year of operation becomes more favourable by a higher fuel consumption, the effect is shown in Fig. 9. At 15 knots, the payback times are less than 5 years for all four variants.

The payback times are shorter for the one-fuel variants than for the mixed-fuel variants. Hence the increased initial investments are more than compensated for by the lower prices for LNG and LPG compared to LSFO in the high-price scenario.

One-fuel variants show that LNG and LPG look attractive. Due to the lower added investment for LPG-capable installations, LPG offers shorter payback periods, cf. Figures 4 and 9.

In the low price scenario, the payback time for LNG is more than the 13 years considered in this study, whereas LPG
has a payback time of approximately 6.5 years. Payback times for LPG in both price scenarios are shown in Fig. 10. Based on the fuel price scenarios presented in this work, LPG can be understood as at least as good as LNG based on shorter payback time, less sensitivity to reasonable price variations and less initial investments.

Sensitivity of fuel prices, LNG tank investment and bunkering choice

Fuel prices with their intrinsic uncertainty are critical for the outcome of the financial analysis. In addition, LSFO is not a common fuel today and it is not clear which refinery streams which will be used to produce LSFO and hence what the price level would be. A study carried out by Purvin & Gertz assumed that LSFO would be based on desulphurised atmospheric residue and that the price would be 120-170 $/t higher than HFO. In order to take the uncertainty into account, a sensitivity analysis was carried out between LSFO and the alternative fuels. A large price spread indicates a larger driving force for a fuel switch to LNG or LPG.

As shown in Fig. 11, LPG requires a smaller discount than LNG to be financially attractive. This is due to a lower investment. Even though the expected discount is less for LPG than LNG, the pay-back time is shorter. Nevertheless, with reasonable prices for LNG and LPG in the high-price scenario the additional investment due to the alternative fuel is paid back in the project period of 13 years.

If LSFO 0.5% will be based on a distillate, MGO prices will likely increase at the beginning of the global sulphur cap. This is not included in our study, but since such increases would make the alternative fuel look better, our estimated payback times are considered conservative in this case.
The outcome of the financial assessment is also strongly dependent on the tank cost in the case of LNG. This tendency is shown in Fig. 12. E.g. if the LNG tank investment were to be reduced to below 2 000 $/m³, including the foundation, the LNG based variant would have about a year less payback time and would be closer to the payback time of LPG, compare with Fig. 9.

In this study a tank capacity for a half roundtrip was assumed, which means that the vessel would need to bunker in Houston and in Rotterdam. However, there is a fuel price difference between the ports. Therefore, the scenario was also checked for bunkering LNG and LPG only in the cheapest location in the round trip, i.e. Houston. When LNG is used for the round trip, the payback time increased from 76 to 97 months by reduction of bunkering to one location. Hence, the additional investment cost in tank is not returned by the lowered fuel price. However for LPG, the payback time is reduced from 57 to 51 months by installing the tank capacity for a full round trip. The main reason for the difference is the high tank price for LNG compared to LPG.

Fig. 12: Payback time as a function of specific tank cost for LNG, high price scenario. Dashed line indicates reference value.

Fig. 13: Comparison of payback time for LNG/LPG bunkering for one location with full round trip endurance (Houston) or for bunkering in two locations for half round trip endurance (Houston and Rotterdam)
Conclusions

The interest in using alternative fuels is growing, and the first ships with dual fuel two-stroke propulsion engines have now entered service.

The fuel alternatives LNG, LPG, methanol and ULSFO have been compared to a reference case using traditional fuels (MGO/LSFO) as a means of sulphur compliance for a typical LR1 tanker trading between Europe and Northern America. The comparisons were made with two different scenarios of fuel prices. Generally, the scenario with the highest absolute fuel prices resulted in the highest price difference between traditional and alternative fuels. As a consequence, the high price scenario resulted in the highest annual cost difference for the alternatives as well as the shortest payback times.

With the two price scenarios used in this study, methanol and ULSFO did not show a financial feasibility. LNG and LPG are both financially interesting alternative fuels, and LPG was found to be at least as good as LNG. For these best fuels, the best alternative is to use it both inside and outside SECA regions. For LPG, it is recommended to consider full round trip endurance for the tank system.